work on other members of the $\mathrm{Ta}_{2} \mathrm{O}_{5}-\mathrm{WO}_{3}$ system has confirmed this feature. The following description of the structure of $\mathrm{Ta}_{15} \mathrm{Al}_{4} \mathrm{~W}_{\frac{3}{3}} \mathrm{O}_{40}$ is therefore based on the space group $P 2$ and the atomic coordinates, listed in Table 3.

Tantalum, tungsten and aluminum atoms are statistically distributed in a close-packed hexagonal arrangement within sheets separated by $3.88 \AA$. The sheets are slightly puckered, the maximum displacement of a metal atom from the (001) plane being $0.08 \AA$. The oxygen atoms form coordination polyhedra about each metal atom in the form of either a distorted pentagonal bipyramid or octahedron and within the (001) planes these polyhedra share edges and corners. Extension of the structure along the [001] direction occurs by cornersharing. Bond distances and angles for each polyhedron are listed in Table 4 together with e.s.d.'s. Observed and

Fig. 2. A projection of the real structure of $\mathrm{Ta}_{15} \mathrm{Al}_{4} \mathrm{~W}_{3} \mathrm{O}_{40}$ onto the (001) plane. Black dots represent metal atoms and shaded areas oxygen coordination polyhedra.
calculated structure factors are given in Table 5. A (001) projection of the structure is shown in Fig. 2.

The structure of $\mathrm{Ta}_{15} \mathrm{Al}_{4} \mathrm{~W}_{3} \mathrm{O}_{40}$ differs from that of $\mathrm{Ta}_{15} \mathrm{WO}_{40 \frac{1}{2}}$ only in that the partially occupied oxygen site $\mathrm{O}(21)$ of the latter structure is now completely empty in this present structure. There are thus two distortion planes per unit cell. Theseare related by a(020) mirror plane to form a doublet with an intraseparation distance of $7 \AA$. These doublets are repeated along the [010] direction at intervals of $29 \cdot 2 \AA(=b)$.

The most regular polyhedra are found midway between the (010) and (020) folding planes. The octahedron surrounding $M(4)$ has metal-oxygen bond distances varying between 1.66 and $2 \cdot 19 \AA$, oxygen-oxygen contact distances between $2 \cdot 32$ and $3 \cdot 12 \AA$ and a square planar arrangement of atoms within the (001) plane. The pentagonal bipyramid associated with $M(7)$ is the most regular of this type of polyhedron, with metaloxygen distances $[2.07(9) \AA$] averaging slightly greater than those in the $M(4)$ octahedron $[1.92(6) \AA]$. Average oxygen-oxygen approach distances are the same for each type of polyhedron [$2 \cdot 72$ (9) \AA] and agree well with similar distances found in other studies (Stephenson \& Roth, 1971a, b).

References

Cromer, D. T. \& Waber, J. T. (1965). Acta Cryst. 18, 104.
Dauben, C. H. \& Templeton, D. H. (1955). Acta Cryst. 8, 841.

Geller, S. (1961). Acta Cryst. 14, 1026.
Stephenson, N. C. \& Roth, R. S. (1971a). Acta Cryst. B27, 1010.

Stephenson, N. C. \& Roth, R. S. (1971b). Acta Cryst. B27, 1018.

Suzuki, T. (1960). Acta Cryst. 13, 279.

Structural Systematics in the Binary System $\mathrm{Ta}_{2} \mathbf{O}_{5}-\mathbf{W O}_{3}$. IV. The Structure of $\mathrm{Ta}_{38} \mathbf{W O}_{98}$

By N.C.Stephenson* and R.S.Roth
National Bureau of Standards, Washington, D. C. 20234. U.S.A.

(Received 9 March 1970 and in revised form 27 July 1970)

Abstract

The structure of the composition $\mathrm{Ta}_{38} \mathrm{WO}_{98}$ is described in terms of a $19 \mathrm{UO}_{3}$-type subcell unit containing 38 metal atoms and $95 \cdot 5$ oxygen atoms. The orthogonal unit cell has dimensions $a=6 \cdot 188$, $b=69 \cdot 57, c=3.880 \AA$ and the structure was solved in projection from the Patterson function utilizing photographically recorded data. Atomic positional and thermal parameters were refined by leastsquares methods to a conventional R value of $0 \cdot 118$. The composition requires that the unit cell of the equilibrated compound be $429 \mathrm{UO}_{3}$-type subcells. As a result, the description of the structure in terms of an average $19 \mathrm{UO}_{3}$-type subcell unit introduces a splitting of certain atomic peaks. These effects are discussed.

Introduction

The composition $19 \mathrm{Ta}_{2} \mathrm{O}_{5} . \mathrm{WO}_{3}$ cannot be held in solid-liquid equilibrium like the previously described

[^0]compounds. Crystals are therefore difficult to prepare and thermal equilibration of the structure is very slow since both processes involve solid-state reactions. The crystal whose structure is described below was thermally equilibrated at $1605^{\circ} \mathrm{C}$ for 100 hours and can be considered to be close to the final equilibrium structure.

The composition $19 \mathrm{Ta}_{2} \mathrm{O}_{5} . \mathrm{WO}_{3}$ has not quite the $19 \mathrm{UO}_{3}$-type subcell structure. The actual composition of 19 subcells would be $\mathrm{M}_{22} \mathrm{O}_{55}$ (11 subcell, Stephenson \& Roth, 1971d) plus $\mathrm{M}_{16} \mathrm{O}_{40 \ddagger}$ (8 subcell, Stephenson \& Roth, 1971b) or $\mathrm{M}_{38} \mathrm{O}_{95 \cdot 5}$ i.e. $37 \mathrm{Ta}_{2} \mathrm{O}_{5} .2 \mathrm{WO}_{3}$. The diffraction patterns of $19 \mathrm{Ta}_{2} \mathrm{O}_{5} . \mathrm{WO}_{3}$ can be satisfactorily indexed on the basis of a $19 \mathrm{UO}_{3}$-type subcell structure but the stoichiometry would require such a unit cell to contain $\mathrm{M}_{38} \mathrm{O}_{95 \cdot 487}$. The real unit cell of thermally equilibrated $19 \mathrm{Ta}_{2} \mathrm{O}_{5} . \mathrm{WO}_{3}$ has a b axis multiplicity of 429 and contains twenty-three $11 \mathrm{UO}_{3}{ }^{-}$ type subcells together with twenty-two $8 \mathrm{UO}_{3}$-type subcells.

The structure described below has not quite reached the $19 \mathrm{UO}_{3}$-type subcell structure partially because of insufficient heat treatment and partially because of composition. Nevertheless, such a structure can be expected to provide information about the process by which the structure of any member of the series
$\mathrm{Ta}_{2} \mathrm{O}_{5}-\cdots-11 \mathrm{Ta}_{2} \mathrm{O}_{5} .4 \mathrm{WO}_{3}$ undergoes a continuous change in reaching a final equilibrium state.

Experimental

Owing to the small departure from ideality, and a consequent uncertainty in the exact location of a diffracted beam, single-crystal X-ray data for the compound $19 \mathrm{Ta}_{2} \mathrm{O}_{5} . \mathrm{WO}_{3}$ were not collected using a diffractometer. Intensities were estimated from film packs using a calibrated strip prepared in the usual way from the crystal under examination. The equiinclination Weissenberg method was used to collect data from a near-spherical crystal mounted about the c axis. $\mathrm{Cu} K \alpha$ radiation was used and the data were processed (except absorption) using the $X-R A Y 67$ program system (Stewart, 1967) and the NBS Univac 1108 computer. The crystal data are as follows: $\mathrm{Ta}_{37} \mathrm{WO}_{95} \cdot 487, \quad M=8404 \cdot 3 ; \quad a=6 \cdot 188 \pm 0 \cdot 001, \quad b=$

Table 1. Positional and thermal atomic parameters
Standard deviations are given in brackets and the form of the anisotropic thermal ellipsoid is $\exp \left[-\left(\beta_{11} h^{2}+\beta_{22} k^{2}+2 \beta_{12} h k\right)\right]$. Atoms $O(20)$ to $O(29)$ have z parameters of $\frac{1}{2}$; the remaining atoms have z parameters of zero. Bracketed atoms are doublets and each atom $O(14)$ to $O(19)$ has a population parameter of 0.5 . The population parameters for $O(12)$ and $O(13)$ are 0.125 and 0.750 respectively.

	x / a	y / b	$\begin{gathered} \beta_{11} \times 10^{4} \\ \text { or } B \end{gathered}$	$\beta_{22} \times 10^{5}$	$\beta_{12} \times 10^{5}$
M(1)	0.0641 (44)	0.04939 (28)	141 (54)	2 (2)	-84 (36)
M(2)	0.0445 (42)	$0 \cdot 10594$ (30)	16 (37)	12 (38)	34 (28)
M(3)	0.0583 (37)	$0 \cdot 16014$ (19)	73 (53)	3 (2)	29 (26)
M(4)	$0 \cdot 1582$ (31)	$0 \cdot 21044$ (28)	17 (26)	6 (2)	-42 (22)
M(5)	0.5354 (37)	0.02765 (23)	- 108 (29)	3 (3)	7 (22)
M(6)	0.5176 (33)	0.08061 (19)	-18 (29)	-4 (1)	-1 (20)
M(7)	0.6263 (48)	$0 \cdot 12963$ (29)	21 (41)	6 (3)	-32 (31)
M(8)	0.5783 (39)	$0 \cdot 18365$ (16)	53 (38)	0 (2)	13 (24)
M(9)	0.5749 (29)	$0 \cdot 23929$ (21)	1 (26)	1 (2)	-17(22)
$\mathrm{M}(10)$	0.0000	$0 \cdot 0000$	-94 (35)	-4 (4)	0
$\mathrm{O}(1)$	0.872 (41)	0.0277 (37)	-2.1(4.3)		
$\mathrm{O}(2)$	$0 \cdot 407$ (54)	0.0529 (43)	$0 \cdot 2$ (4.1)		
$\mathrm{O}(3)$	$0 \cdot 642$ (43)	$0 \cdot 0000$	-1.7 (5.4)		
$\mathrm{O}(4)$	$0 \cdot 162$ (46)	0.0796 (46)	-0.1 (5.0)		
$\mathrm{O}(5)$	0.366 (55)	$0 \cdot 1109$ (46)	1.5 (6.4)		
O(6)	0.712 (37)	0.1572 (39)	-0.7 (4.8)		
$\mathrm{O}(7)$	0.234 (33)	0.2360 (35)	-0.6 (3.6)		
$\mathrm{O}(8)$	0.504 (45)	0.2104 (43)	0.9 (5.0)		
O(9)	$0 \cdot 980$ (41)	$0 \cdot 1294$ (34)	$0 \cdot 3$ (4.8)		
O(10)	0.793 (29)	0.0984 (42)	-0.9 (4.3)		
O(11)	$0 \cdot 900$ (31)	$0 \cdot 1894$ (36)	-0.9 (3.8)		
$\mathrm{O}(12)$	$0 \cdot 250$ (55)	$0 \cdot 0089$ (5)	-0.8(2.1)		
O(13)	$0 \cdot 288$ (44)	0.0185 (54)	-1.6 (5.1)		
O(14)	$0 \cdot 815$ (44)	0.0626 (54)	-1.2 (5.4)		
$\mathrm{O}(15)$	0.869 (81)	0.0760 (79)	-1.2 (5.1)		
$\mathrm{O}(16)$	0.288 (42)	$0 \cdot 1362$ (43)	-2.1 (4.8)		
O(17)	$0 \cdot 380$ (46)	0.1533 (58)	-0.6 (3.4)		
$\mathrm{O}(18)$	0.790 (47)	0.2123 (61)	-0.5 (4.1)		
O(19)	0.892 (41)	0.2307 (58)	-0.9 (3.8)		
O(20)	0.057	0.0495	$0 \cdot 2$		
O(21)	0.049	$0 \cdot 1055$	0.2		
$\mathrm{O}(22)$	0.057	$0 \cdot 1602$	$0 \cdot 2$		
$\mathrm{O}(23)$	0.158	0.2107	0.2		
O(24)	0.530	0.0274	0.2		
$\mathrm{O}(25)$	0.514	0.0808	0.2		
$\mathrm{O}(26)$	0.620	$0 \cdot 1294$	0.2		
O(27)	0.582	$0 \cdot 1832$	$0 \cdot 2$		
O(28)	0.572	0.2392	0.2		
O(29)	0.000	$0 \cdot 0000$	$0 \cdot 2$		

$69.570 \pm 0.001, \quad c=3 \cdot 880 \pm 0.001 \AA, \quad V_{o}=1670 \AA^{3}$, $Z=1, D_{c}=8.36{\mathrm{~g} . \mathrm{cm}^{-3},} \mu R=1.95$. Unit-cell dimensions were obtained using a Philips powder diffractometer with $\mathrm{Cu} K \alpha$ radiation. Atomic scattering curves and computer programs were the same as described previously (Stephenson \& Roth, 1971a).

Determination and refinement of the structure

The principal structural features were determined by projection along the short c axis. The Laue symmetry and systematic absences in spectra indicated a C centered orthorhombic space group so that the plane group for the (001) projection is either Cmm or Cm . It was possible to interpret the Patterson function with the latter plane group and the positions of the metal atoms were determined from superposition maps using the minimum-function approach (Buerger, 1959). Most atoms are located in the (001) planes since the

Table 2. Observed and calculated structure factors Unobserved data are marked with L .

intensity distributions on zero and upper-level Weissenberg photographs were visually identical.
The positional and isotropic thermal parameters of each metal atom in the asymmetric unit were refined by least-squares methods to a conventional R value of $0 \cdot 168$. The weighting scheme used in these cycles was slightly different from that used with diffractometer data since no reliable standard deviations in structure factor amplitudes were known. It was necessary to minimize the effect of errors due to extinction and the weights were calculated according to the scheme

$$
V^{\prime} w=\frac{Q_{1}}{\max \left(Q_{2} F, Q_{3}\right)}
$$

with $Q_{1}=51 \cdot 2, Q_{2}=1$ and $Q_{3}=512 \cdot 0$.
Oxygen atoms were located by difference Fourier syntheses, which also indicated thermal anisotropy for the metal atoms. Atomic parameters were refined by least-squares cycles, based on F, to the values listed in Table 1. Oxygen atoms that projected close to metal atoms were not varied in the least-squares cycles and small, positive isotropic thermal parameters were assigned to them. The final agreement factor R_{1}, was $0 \cdot 118$.

Table 2 lists observed and calculated structure factors. Bond distances and angles, together with their estimated standard deviations (e.s.d's) are given in Table 3.

Table 3. Selected bond distances (\AA) and angles $\left({ }^{\circ}\right)$ for the compound $\mathrm{Ta}_{38} \mathrm{WO}_{98}$
Standard deviations are given together with frequency of occurrence (second parentheses). * and \dagger refer to coordinates of the inidpoint of the oxygen doublet and symmetry related atom $\bar{x}, \frac{1}{2}-y, z$ respectively. The prime refers to symmetry related atom x, \bar{y}, z.
M(1) Pentagonal bipyramid

$\mathrm{M}(1)-\mathrm{O}(1)$	1.92 (26) (1)
-O(2)	$2 \cdot 14$ (34) (1)
-O(4)	$2 \cdot 19$ (32) (1)
-O(13)	$2 \cdot 56$ (35) (1)
-O(14)	$1 \cdot 95$ (31) (1)
-O(20)	1.94 (20) (2)
$\mathrm{O}(1)-\mathrm{O}(14)$	$2 \cdot 69$ (45) (1)
$\mathrm{O}(14)-\mathrm{O}(4)$	$2 \cdot 38$ (41) (1)
$\mathrm{O}(4)-\mathrm{O}(2)$	$2 \cdot 40$ (44) (1)
$\mathrm{O}(2)-\mathrm{O}(13)$	$2 \cdot 50$ (48) (1)
$\mathrm{O}(13)-\mathrm{O}(1)$	2.65 (38) (1)
$\mathrm{O}(20)-\mathrm{O}(1)$	2.72 (30) (2)
-O(2)	2.92 (34) (2)
-O(4)	$2 \cdot 93$ (35) (2)
-O(13)	$3 \cdot 23$ (29) (2)
-O(14)	$2 \cdot 72$ (32) (2)
$\mathrm{O}(1)-\mathrm{O}(14)-\mathrm{O}(4)$	105 (14)
$\mathrm{O}(14)-\mathrm{O}(4)-\mathrm{O}(2)$	106 (17)
$\mathrm{O}(4)-\mathrm{O}(2)-\mathrm{O}(13)$	123 (17)
$\mathrm{O}(2)-\mathrm{O}(13)-\mathrm{O}(1)$	93 (15)
$\mathrm{O}(13)-\mathrm{O}(1)-\mathrm{O}(14)$	112 (13)

M(2) Octahedron

$\mathrm{M}(2)-\mathrm{O}(4)$	$1.97(32)(1)$
$-\mathrm{O}(5)$	$2.02(34)(1)$
$-\mathrm{O}(9)$	$1.68(24)(1)$
$-\mathrm{O}(10)$	$1.64(20)(1)$

Table 3 (cont.)

$\mathrm{M}(2)-\mathrm{O}(21)$	$1 \cdot 94(20)(2)$
$\mathrm{O}(4)-\mathrm{O}(5)$	$2 \cdot 52(45)(1)$
$\mathrm{O}(5)-\mathrm{O}(9)$	$2.71(42)(1)$
$\mathrm{O}(9)-\mathrm{O}(10)$	$2 \cdot 45(36)(1)$
$\mathrm{O}(10)-\mathrm{O}(4)$	$2 \cdot 63(36)(1)$
$\mathrm{O}(21)-\mathrm{O}(4)$	$2.74(33)(2)$
$-\mathrm{O}(5)$	$2.78(33)(2)$
$-\mathrm{O}(9)$	$2.59(28)(2)$
$-\mathrm{O}(10)$	$2 \cdot 55(24)(2)$
$\mathrm{O}(4)-\mathrm{O}(5)-\mathrm{O}(9)$	$88(13)$
$\mathrm{O}(5)-\mathrm{O}(9)-\mathrm{O}(10)$	$90(11)$
$\mathrm{O}(9)-\mathrm{O}(10)-\mathrm{O}(4)$	$92(11)$
$\mathrm{O}(10)-\mathrm{O}(4)-\mathrm{O}(5)$	$90(14)$

M(3) Octahedron

$\mathrm{M}(3)-\mathrm{O}(6)$	$2 \cdot 15(23)(1)$
$-\mathrm{O}(9)$	$2 \cdot 19(24)(1)$
$-\mathrm{O}(11)$	$2 \cdot 25(24)(1)$
$-\mathrm{O}(17)$	$2 \cdot 05(29)(1)$
$-\mathrm{O}(22)$	$1 \cdot 94(20)(2)$
$\mathrm{O}(6)-\mathrm{O}(9)$	$2 \cdot 55(35)(1)$
$\mathrm{O}(9)-\mathrm{O}(17)$	$2 \cdot 98(41)(1)$
$\mathrm{O}(17)-\mathrm{O}(11)$	$3 \cdot 78(38)(1)$
$\mathrm{O}(11)-\mathrm{O}(6)$	$2 \cdot 52(36)(1)$
$\mathrm{O}(22)-\mathrm{O}(6)$	$2 \cdot 89(29)(2)$
$-\mathrm{O}(9)$	$2 \cdot 93(31)(2)$
$-\mathrm{O}(11)$	$2 \cdot 97(32)(2)$
$-\mathrm{O}(17)$	$2 \cdot 83(31)(2)$
$\mathrm{O}(6)-\mathrm{O}(9)-\mathrm{O}(17)$	$97(12)$
$\mathrm{O}(9)-\mathrm{O}(17)-\mathrm{O}(11)$	$78(11)$
$\mathrm{O}(11)-\mathrm{O}(6)-\mathrm{O}(9)$	$112(11)$
$\mathrm{O}(17)-\mathrm{O}(11)-\mathrm{O}(6)$	$73(12)$

M(4) Octahedron

$\mathrm{M}(4)-\mathrm{O}(7)$	$1 \cdot 84(24)(1)$
$-\mathrm{O}(8)$	$2 \cdot 14(28)(1)$
$-\mathrm{O}(11)$	$2 \cdot 17(22)(1)$
$-\mathrm{O}(18)^{*}$	$2 \cdot 07(23)(1)$
$-\mathrm{O}(23)$	$1.94(20)(2)$
$\mathrm{O}(7)-\mathrm{O}(8)$	$2 \cdot 44(37)(1)$
$\mathrm{O}(8)-\mathrm{O}(11)$	$2 \cdot 85(35)(1)$

Table 3 (cont.)

$\mathrm{O}(11)-\mathrm{O}(18)^{*}$	$2.80(36)(1)$
$\mathrm{O}(18)-\mathrm{O}(7)$	$2.54(34)(1)$
$\mathrm{O}(23)-\mathrm{O}(7)$	$2.66(29)(2)$
$-\mathrm{O}(8)$	$2.89(31)(2)$
$-\mathrm{O}(11)$	$2.92(30)(2)$
$-\mathrm{O}(18)^{*}$	$2.94(31)(2)$
$\mathrm{O}(7)-\mathrm{O}(8)-\mathrm{O}(11)$	$75(12)$
$\mathrm{O}(8)-\mathrm{O}(11)-\mathrm{O}(18)^{*}$	$75(11)$
$\mathrm{O}(11)-\mathrm{O}(18)^{*}-\mathrm{O}(7)$	$105(12)$
$\mathrm{O}(18)^{*}-\mathrm{O}(7)-\mathrm{O}(8)$	$105(12)$

M(5) Octahedron

$\mathrm{M}(5)-\mathrm{O}(1)$	$2 \cdot 08(26)(1)$
$-\mathrm{O}(2)$	$1 \cdot 93(31)(1)$
$-\mathrm{O}(3)$	$2 \cdot 03(09)(1)$
$-\mathrm{O}(13)$	$1 \cdot 66(29)(1)$
$-\mathrm{O}(24)$	$1 \cdot 94(20)(2)$
$\mathrm{O}(1)-\mathrm{O}(2)$	$3 \cdot 37(41)(1)$
$\mathrm{O}(2)-\mathrm{O}(13)$	$2 \cdot 50(48)(1)$
$\mathrm{O}(13)-\mathrm{O}(3)$	$2 \cdot 54(38)(1)$
$\mathrm{O}(3)-\mathrm{O}(1)$	$2 \cdot 40(30)(1)$
$\mathrm{O}(24)-\mathrm{O}(1)$	$2 \cdot 87(30)(2)$
$-\mathrm{O}(2)$	$2 \cdot 74(32)(2)$
$-\mathrm{O}(3)$	$2 \cdot 81(26)(2)$
$\mathrm{O}(13)-\mathrm{O}(2)-\mathrm{O}(13)$	$2 \cdot 53(27)(2)$
$\mathrm{O}(2)-\mathrm{O}(13)-\mathrm{O}(3)$	$103(11)$
$\mathrm{O}(13)-\mathrm{O}(3)-\mathrm{O}(1)$	$96(10)$
$\mathrm{O}(3)-\mathrm{O}(1)-\mathrm{O}(2)$	$85(10)$

M(6) Pentagonal bipyramid

$\mathrm{M}(6)-\mathrm{O}(2)$	$2 \cdot 05(30)(1)$
$-\mathrm{O}(4)$	$2 \cdot 20(29)(1)$
$-\mathrm{O}(5)$	$2 \cdot 31(32)(1)$
$-\mathrm{O}(10)$	$2 \cdot 11(23)(1)$
$-\mathrm{O}(14)$	$2 \cdot 08(30)(1)$
$-\mathrm{O}(25)$	$1 \cdot 94(20)(2)$
$\mathrm{O}(2)-\mathrm{O}(4)$	$2 \cdot 40(44)(1)$
$\mathrm{O}(4)-\mathrm{O}(5)$	$2 \cdot 52(45)(1)$
$\mathrm{O}(5)-\mathrm{O}(10)$	$2 \cdot 78(39)(1)$
$\mathrm{O}(10)-\mathrm{O}(14)$	$2 \cdot 26(48)(1)$

Fig. 1. The ideal structure of $19 \mathrm{UO}_{3}$-type subcells. The contents of the unit cell are $\mathrm{M}_{3} \mathrm{O}_{100}$, where M represents a metal atom, and the structure is made up of chains of fused pentagons which are 6 and 8 pentagons long in the linear sections.

Table 3 (cont.)

$\mathrm{O}(14)-\mathrm{O}(2)$	$2 \cdot 66(44)(1)$
$\mathrm{O}(25)-\mathrm{O}(2)$	$2.82(33)(2)$
$-\mathrm{O}(4)$	$2 \cdot 92(31)(2)$
$-\mathrm{O}(5)$	$3 \cdot 00(36)(2)$
$-\mathrm{O}(10)$	$2.87(29)(2)$
$-\mathrm{O}(14)$	$2 \cdot 86(32)(2)$
$\mathrm{O}(2)-\mathrm{O}(4)-\mathrm{O}(5)$	$111(15)$
$\mathrm{O}(4)-\mathrm{O}(5)-\mathrm{O}(10)$	$102(14)$
$\mathrm{O}(5)-\mathrm{O}(10)-\mathrm{O}(14)$	$111(13)$
$\mathrm{O}(10)-\mathrm{O}(14)-\mathrm{O}(2)$	$107(14)$
$\mathrm{O}(14)-\mathrm{O}(2)-\mathrm{O}(4)$	$109(15)$

M(7) Pentagonal bipyramid

$\mathrm{M}(7)-\mathrm{O}(5)$	2.07 (33) (1)
-O(6)	1.99 (27) (1)
-O(9)	$2 \cdot 19$ (26) (1)
-O(10)	2.41 (28) (1)
-O(17)	$2 \cdot 24$ (36) (1)
-O(26)	1.94 (20) (2)
$\mathrm{O}(5)-\mathrm{O}(17)$	$2 \cdot 95$ (52) (1)
$\mathrm{O}(17)-\mathrm{O}(6)$	$2 \cdot 17$ (37) (1)
$\mathrm{O}(6)-\mathrm{O}(9)$	$2 \cdot 55$ (35) (1)
$\mathrm{O}(9)-\mathrm{O}(10)$	$2 \cdot 45$ (36) (1)
$\mathrm{O}(10)-\mathrm{O}(5)$	$2 \cdot 78$ (39) (1)
$\mathrm{O}(26)-\mathrm{O}(5)$	$2 \cdot 81$ (34) (2)
-O(6)	$2 \cdot 80$ (32) (2)
-O(9)	2.95 (30) (2)
-O(10)	$3 \cdot 09$ (34) (2)
-O(17)	$3 \cdot 00$ (37) (2)
$\mathrm{O}(5)-\mathrm{O}(17)-\mathrm{O}(6)$	99 (16)
$\mathrm{O}(17)-\mathrm{O}(6)-\mathrm{O}(9)$	123 (17)
$\mathrm{O}(6)-\mathrm{O}(9)-\mathrm{O}(10)$	111 (12)
$\mathrm{O}(9)-\mathrm{O}(10)-\mathrm{O}(5)$	100 (13)
$\mathrm{O}(10)-\mathrm{O}(5)-\mathrm{O}(17)$	107 (13)

M(8) Octahedron

$\mathrm{M}(8)-\mathrm{O}(6)$
-O(8)
-O(11)
-O(17)
-O(27)
$\mathrm{O}(6)-\mathrm{O}(17)$
$\mathrm{O}(17)-\mathrm{O}(8)$
$\mathrm{O}(8)-\mathrm{O}(11)$
$\mathrm{O}(11)-\mathrm{O}(6)$
$\mathrm{O}(27)-\mathrm{O}(6)$
-O(8)
-O(11)
-O(17)
$\mathrm{O}(6)-\mathrm{O}(17)-\mathrm{O}(8)$
$\mathrm{O}(17)-\mathrm{O}(8)-\mathrm{O}(11)$
$\mathrm{O}(8)-\mathrm{O}(11)-\mathrm{O}(6)$
$\mathrm{O}(11)-\mathrm{O}(6)-\mathrm{O}(17)$

2.01 (27) (1)
1.92 (30) (1)
2.03 (20) (1)
2.44 (38) (1)
1.94 (20) (2)
$2 \cdot 17$ (37) (1)
$3 \cdot 90$ (38) (1)
$2 \cdot 85$ (35) (1)
$2 \cdot 52$ (36) (1)
2.77 (31) (2)
2.75 (32) (2)
$2 \cdot 80$ (26) (2)
$3 \cdot 11$ (40) (2)
69 (16)
75 (16)
83 (10)
124 (17)
M(9) Octahedron
$\mathrm{M}(9)-\mathrm{O}(7)$
$-\mathrm{O}(7) \dagger$
$-\mathrm{O}(8)$
$-\mathrm{O}(18)^{*}$
$-\mathrm{O}(28)$
$\mathrm{O}(7)-\mathrm{O}(7) \dagger$
$\mathrm{O}(7) \dagger-\mathrm{O}(18)$
$\mathrm{O}(18)-\mathrm{O}(8)$
$\mathrm{O}(8)-\mathrm{O}(7)$
$\mathrm{O}(28)-\mathrm{O}(7)$
$-\mathrm{O}(7) \dagger$
$-\mathrm{O}(8)$
$\mathrm{O}(7) \dagger-\mathrm{O}(18)^{*}$
$\mathrm{O}(18)-\mathrm{O}(18)-\mathrm{O}(8)$
$\mathrm{O}(8)-\mathrm{O}(7)-\mathrm{O}(7)$
$\mathrm{O}(7)-\mathrm{O}(7) \dagger-\mathrm{O}(18)$
$2 \cdot 12$ (21) (1)
$1 \cdot 98$ (24) (1)
2.06 (30) (1)
1.90 (28) (1)
1.94 (20) (2)
3.57 (35) (1)
2.73 (33) (1)
$2 \cdot 82$ (33) (1)
2.44 (37) (1)
2.86 (27) (2)
2.77 (32) (2)
2.82 (33) (2)
2.72 (35) (2)

79 (17)
107 (16)
79 (18)
95 (17)

Table 3 (cont.)
M(10) Pentagonal bipyramid
$\mathrm{M}(10)-\mathrm{O}(1)$
$-\mathrm{O}(3)$
$-\mathrm{O}(13)$
$-\mathrm{O}(29)$
$\mathrm{O}(1)-\mathrm{O}(3)$
$\mathrm{O}(1)-\mathrm{O}(13)$
$\mathrm{O}(13)-\mathrm{O}\left(13^{\prime}\right)$
$\mathrm{O}(29)-\mathrm{O}(1)$
$-\mathrm{O}(3)$
$\mathrm{O}(13)$
$\mathrm{O}(1)-\mathrm{O}(3)-\mathrm{O}\left(1^{\prime}\right)$
$\mathrm{O}(3)-\mathrm{O}(1)-\mathrm{O}(13)$
$\mathrm{O}(1)-\mathrm{O}(13)-\mathrm{O}\left(13^{\prime}\right)$
2.08 (26) (2)
$2 \cdot 22$ (27) (1)
2.20 (31) (2)
1.94 (20) (2)
2.40 (30) (2)
2.65 (38) (2)
2.57 (53) (1)
2.85 (31) (4)
2.95 (31) (2)
2.93 (34) (4)

107 (13) (1)
112 (13) (2)
104 (14) (2)
$\mathrm{M}(10)$ Octahedron
$\mathrm{M}(10)-\mathrm{O}(1)$
$-\mathrm{O}(3)$
$-\mathrm{O}(12)$
$-\mathrm{O}(29)$
$\mathrm{O}(1)-\mathrm{O}(3)$
$\mathrm{O}(1)-\mathrm{O}(12)$
$\mathrm{O}\left(1^{\prime}\right)-\mathrm{O}(12)$
$\mathrm{O}(29)-\mathrm{O}(1)$
$-\mathrm{O}(3)$
$-\mathrm{O}(12)$
$\mathrm{O}(1)-\mathrm{O}(3)-\mathrm{O}\left(1^{\prime}\right)$
$\mathrm{O}(3)-\mathrm{O}(1)-\mathrm{O}(12)$
$\mathrm{O}(1)-\mathrm{O}(12)-\mathrm{O}\left(1^{\prime}\right)$
$\mathrm{O}(12)-\mathrm{O}\left(1^{\prime}\right)-\mathrm{O}(3)$
2.08 (26) (2)
2.22 (27) (1)
1.67 (32) (1)
1.94 (20) (2)
$2 \cdot 40$ (30) (2)
3.46 (35) (1)
$2 \cdot 68$ (39) (1)
$2 \cdot 85$ (31) (4)
2.95 (31) (2)
2.56 (29) (2)

107 (13)
97 (11)
77 (10)

Description and discussion of the structure

The $19 \mathrm{UO}_{3}$-type subcell structure can be considered as a combination of the basic 8 and $11 \mathrm{UO}_{3}$-type subcell structures. The chain lengths in these cases are 6 and 8 pentagons and the ideal structure is shown in Fig. 1. This unit cell contains 38 metal and 100 oxygen atoms, whereas the real unit cell of the 19 UO_{3}-type subcell structure contains 38 metal and $95 \frac{1}{2}$ oxygen atoms. There are thus $4 \frac{1}{2}$ distortion planes per unit cell.

Four of the distortion planes can be immediately located. They are associated with an oxygen atom which would occur at $(0 \cdot 30,0 \cdot 18,0 \cdot 00)$ in the ideal structure but is completely missing in the real structure. Small movements in positions of neighboring oxygen atoms give metal atoms $M(3), M(4)$ and $M(8)$ distorted octahedral environments, whereas in the ideal structure the former two would each be surrounded by a pentagonal bipyramid of oxygen atoms. The general position in plane group Cm is fourfold and therefore these four distortion planes occur at d_{1}, d_{2}, d_{3} and d_{4} as shown in Fig. 2.

The disposition of these four distortion planes is important. They occur in doublets. No association of distortion planes is possible in the compound $11 \mathrm{Ta}_{2} \mathrm{O}_{5} .4 \mathrm{WO}_{3}$. In the compounds $15 \mathrm{Ta}_{2} \mathrm{O}_{5} .2 \mathrm{WO}_{3}$ and $45 \mathrm{Ta}_{2} \mathrm{O}_{5} . \mathrm{Al}_{2} \mathrm{O}_{3} .2 \mathrm{WO}_{3}$ the distribution of distortion planes along the b axis depends on the plane group (Stephenson \& Roth, 1971a, b, c). A distribution involving doublets was inferred for the latter two compounds but with the present investigation there is

Fig. 2. The real structure of $19 \mathrm{UO}_{3}$-type subcells in the system $\mathrm{Ta}_{2} \mathrm{O}_{5}-\mathrm{WO}_{3}$. The contents of the unit cell depicted here are $\mathrm{M}_{38} \mathrm{O}_{95}$ and distortion planes occur where reductions in coordination numbers have occurred for certain metal atoms. Four distortion planes are shown, related by the symmetry elements of plane group Cm , and they occur in doublets each separated by approximately $35 \AA$. Black dots represent oxygen atoms and shaded areas represent oxygen coordination polyhedra.
no doubt that distortion planes associate as doublets.
The remaining distortion plane can be identified with oxygen atoms $\mathrm{O}(12)$ and $\mathrm{O}(13)$ constituting a doublet in exactly the same position as $\mathrm{O}(17)$ and $\mathrm{O}(18)$ in the compound $11 \mathrm{Ta}_{2} \mathrm{O}_{5} .4 \mathrm{WO}_{3}$. This distortion plane occurs every two unit cells so that metal atom $\mathrm{M}(10)$ has pentagonal bipyramidal coordination and distorted octahedral coordination in the ratio $3: 1$. The area of the structure depicted in Fig. 2 is therefore, on the average, one half a unit cell.

The consequence of the compound $19 \mathrm{Ta}_{2} \mathrm{O}_{5} \cdot \mathrm{WO}_{3}$ not being fully equilibrated thermally, and also being slightly off composition, appears in the Fourier syntheses. Oxygen atoms in the (001) plane, which occur where two pentagons share a corner, appear as doublets and the line of centers of each doublet is perpendicular to the line of centers of the pentagon pair involved in the corner sharing. The movement of a corner shared oxygen atom along such a line of centers e.g. O(14)-O(15), Fig. 3, tends to transform the neighboring octahedra e.g. $\mathrm{M}(2)$ and $\mathrm{M}(5)$ into pentagonal bipyramids. The converse is also true: the superposition of distorted octahedra and pentagonal bipyramids will cause the observed splitting. The splitting of these corner-shared oxygen atoms is therefore a result of an oxygen framework that is not yet periodic along the [010] direction. Oxygen atoms are still moving into their equilibrium positions and they do so, locally, in sheets which move perpendicular to the b axis.

The coordinated movements of atoms, in sheets, has been postulated by Andersson \& Wadsley (1966) to explain the formation and subsequent migration of shear planes within a crystal. The local movement of sheets of atoms as demonstrated above, bears an

Fig. 3. The effect of superimposing two square coordinated metal atoms [M(5) and M(2) in heavy lines] and two pentagonally coordinated metal atoms [M(5) and M(2) in dotted lines]. Some atoms remain spherical, others elongate and the atom along the line of centers is split into two (or three) weaker peaks.
analogous relationship to the migration of distortion planes through a crystal during thermal equilibration and this is discussed in more detail in the next paper (Stephenson \& Roth, 1971d).

References

Andersson, S. \& Wadsley, A. D. (1966). Nature, Lond. 211, 581.

Buerger, M. J. (1959). Vector Space and its Application in Crystal Structure Investigation. New York: John Wiley.
Stephenson, N. C. \& Roth, R. S. (1971a). Acta Cryst. B27, 1010.

Stephenson, N. C. \& Roth, R. S. (1971b). Acta Cryst. B27, 1018.

Stephenson, N. C. \& Roth, R. S. (1971c). Acta Cryst. B27, 1025.

Stephenson, N. C. \& Roth, R. S. (1971d). Acta Cryst. B27, 1037.
Stewart, J. M. (1967). Technical Report 67-58, Computer Science Center, Univ. of Maryland.

[^0]: * Permanent address: School of Chemistry, University of New South Wales, Sydney, Australia.

